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Abstract--On a fault surface the orientation and sense of maximum resolved shear stress (r) are controlled by the 
orientations and relative magnitudes of the principal stresses. A simple method is presented for determining the 
orientation and sense of r using the orthographic projections of the greatest and least compressive stresses. 

INTRODUCTION 

RECENTLY, Lisle (1989), Means (1989), De Paor (1990) 
and Fry (1992) have described graphical methods for 
determining the orientation of the line of maximum 
resolved shear stress on a generally oriented plane. 
Presented here is a shear stress construction which, like 
those of Lisle, Means, De Paor and Fry, is simple to 
implement graphically. Because of its simplicity, this 
method may be useful in fault-slip analysis, engineering 
geology and other applications. 

METHOD 

The method of Means (1989) provides a useful start- 
ing point by decomposing a stress tensor into three 
components: two deviatoric components with magni- 
tudes (oh - 02) and (o3 - a2), and a hydrostatic com- 
ponent with magnitude (02). The shear stress orien- 
tation on the fault is controlled entirely by the two 
deviatoric components. 

Construction 

To solve for the orientation of the line of maximum 
shear stress, first plot on a lower-hemisphere projection 
the fault surface great circle, the fault pole (P), and the 
Ol and o3 axes (Fig. la). Next, measure the angles 
between the al,  o3 axes and the fault pole, angles a and 
r ,  respectively (Fig. lb). Then find the orthographic 
projections of the stress axes on the fault surface as 
follows: construct great circles containing the fault pole 
and the o I axis, and the fault pole and the o 3 axis (Fig. 
lc). The intersections of the fault surface and these two 
planes are the orthographic projections of the o 1 and 03 
axes across the fault (Fig. lc). These lines are called rl 

and r3, respectively, to follow the terminology of Means 
(1989). Based on Means (1989), the magnitudes of the 
shear stresses acting along rl and z 3 are 

r 1 = ( a  1 --  0"2) c o s  ( a )  sin (a) 

r 3 = (0" 3 --  0"2) COS ( f l )  sin ( f l ) .  

In the present construction, the sense of shear in the 
direction of the r I and r 3 components depends on the 
arrangement of the fault pole, the shear stress com- 
ponent and the principal stress in the great circle con- 
taining these lines. When viewed in the plane containing 
the fault pole, the principal stress and its orthographic 
projection shear stress component, simple relationships 
exist between the arrangement of these features and the 
sense of displacement of the hanging wall relative to the 
footwall (Fig. 2). Where al has a steeper pitch than the 
fault pole and rl ,  it corresponds to a downward displace- 
ment of the hanging wall with respect to the footwall 
(Fig. 2a). Where Ol lies on a great circle between the 
fault pole and rl, in projection, this corresponds to an 
upward displacement of the hanging wall with respect to 
the footwall (Fig. 2b). These rules apply to 03 in the 
opposite form: where a3 lies on a great circle between 
the fault pole and r3, in projection, it corresponds to an 
upward displacement of the hanging wall with respect to 
the footwall (Fig. 2c). Where a3 has a shallower pitch 
than either the fault pole or r3, this corresponds to a 
downward displacement of the hanging wall with respect 
to the footwall (Fig. 2d). 

To avoid confusion about shear sense when plotting 
lines r I and r3, I use a filled circle for a downward 
displacement of the hanging wall, and an open circle for 
an upward displacement of the hanging wall. Note that 
in the example both r~ and r 3 are downward-directed 
(Fig. lc). 

The next step in the method is to measure the angle 
(R) between rl and r3 (Fig. ld). Then, calculate the 
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Fig. 1. Steps in the construction. (a) Orientat ions of the fault,  the fault pole (P), and ol and a3. The plane is oriented 039 ° 51 ° 
(strike and dip, r ight-hand rule), o 1 plunges 84 ° toward 306 °, a3 plunges 03 ° toward 077 °. The relative magni tudes  of o '1,0 2 
and e 3 are 1.009, 0.5616 and 0.0616, respectively. (b) Measure  the  angles between the fault pole (P) and stress axes el and 
a 3. (c) Solve for the orthographic projections of o 1 and o 3 by constructing the  great  circles containing a stress axis and the 
fault pole. The  intersections of these great circles with the fault surface correspond to z 1 and z 3. Note the senses of  shear  are 
both hanging wall-downward. Measure  the angle of  pitch (d) between r I and r 3; the  angle of  pitch in this example is 62 °. 
(e) Calculation of the angle between 1" 1 and the line of max imum resolved shear  stress. Here,  ~ = 28 °. (f) The  line of 
max imum shear  stress lies at an angle $ from r I towards r3, plunges 44 ° towards 90 °, and corresponds to an oblique-normal 

displacement.  

angle (~) between ol and the line of maximum shear 
using 

= arctan [r3 sin (R)/(rl + r 3 COS (R))] 

(Fig. le), which combines the vector addition of rl and 
r3 and the trigonometric calculation of the angle be- 
tween r3 and the line of maximum shear (Fig. 3). The 

line of maximum shear stress lies at an angle q~ from rl 
towards v3 (Fig. lf). The trend and plunge of the line of 
maximum shear stress can then be recovered directly 
from the plot. Displacement sense, hanging wall relative 
to footwall, is given by the polar direction of the pitch of 
the resolved shear sense in the fault; pitches less than 
180 ° correspond to normal displacements in the plane of 
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Fig. 2. Relationships between the sense of displacement of the hanging wall caused by rl (a & b) and r3 (c & d). Great circles 
represent the plane containing the fault pole, principal stress and orthographic projection of the principal stress. (a) When 
o 1 has a steeper pitch than both the fault pole and the orthographic projection, this corresponds to a downward displacement 
of the hanging wall with respect to the footwall. (b) Where el has a pitch which is less than either the fault pole or the 
orthographic projection, this corresponds to an upward displacement of the hanging wall with respect to the footwall. For 
a3, the relationship given in (a) and (b) above applies in reverse. (c) In cases where a3 has a steeper pitch than both the fault 
pole and the orthographic projection, this corresponds to an upward relative displacement of the hanging wall. (d) Where 
the pitch of either the fault pole or the orthographic projection is steeper than 05, this corresponds to a downward relative 

displacement of the hanging wall. 
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Fig. 3. Trigonometric relationships between rl, 33 and rma x viewed in 
the plane of the fault, r 1 is used as the y-axis, and has x and y 
co-ordinates (0) and (rl), respectively, r 3 lies at an angle (R) from rl, 
and has x and y co-ordinates (sin (R)T3) and (cos (R)T3), respectively. 
Vector addition of rl and r3 yields the vector rmax, which has x 
co-ordinate (sin (R)r3) andy co-ordinate (r I + cos (R)~3). The pitch of 
rmax(~) in the fault surface is simply the arctangent of the x and y 
co-ordinates of rma x. Similarly, the magnitude of rmax is simply a 

function of sin (~b). 

t he  p r o j e c t i o n ,  whi le  p i t ches  g r ea t e r  t h a n  180 ° cor re -  
s p o n d  to  r eve r s e  d i s p l a c e m e n t s  ou t  o f  the  p l a n e  of  the  
p ro j ec t i on .  In  the  e x a m p l e  p r o v i d e d ,  a n  o b l i q u e - n o r m a l  

d i s p l a c e m e n t  w o u l d  resul t .  
T h e  m a g n i t u d e  of  the  r e s o l v e d  shea r  s t ress  across  the  

faul t  can  be  ca l cu l a t ed  by  

/ ' m a x  = (s in  (R) r3) / s in  (q~) 

which  is a r e p l a c e m e n t  of  a v e c t o r  a d d i t i o n  of  ~1 a n d  r3 
by  a s imple  t r i g o n o m e t r i c  r e l a t i o n s h i p  b e t w e e n  these  
l ines ,  t he  ang l e  of  r a k e  b e t w e e n  t h e m ,  a n d  the  m a g n i -  
t u d e  of  the  r e so lved  shea r  s t ress  (Fig.  3). 

D I S C U S S I O N  

A n  a d v a n t a g e  of  this  a p p r o a c h  is tha t  the  two  r o t a t i o n  
s teps  f o u n d  in M e a n s  (1989) a re  e l i m i n a t e d .  T h e  p r e s e n t  
m e t h o d  r equ i r e s  o n l y  e l e m e n t a r y  o p e r a t i o n s ,  a n d  can  
eas i ly  be  d o n e  o n  a s ingle  ove r l ay  wi th  the  a id  of  e i t he r  a 
p o c k e t  c a l cu l a to r  o r  p e r s o n a l  c o m p u t e r .  H o w e v e r ,  b o t h  
m e t h o d s  y ie ld  the  s a m e  resul t .  Th i s  p r o b l e m  cou ld  also 
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be approached using stereovectors (De Paor 1979). 
However ,  the method presented here circumvents the 
scaling steps required in a s tereovector  solution and 
avoids both the inaccuracy on a steeply dipping fault and 
the inconvenience of a change of reference frame. How- 
ever,  the present  method does require careful construc- 
tion to insure the proper  interpretation of the shear 
stress components .  This method is similar to that of Fry 
(1992) in finding the direction of greatest  resolved shear 
stress as a tr igonometric function of the deviatoric stress 
components .  Fry 's  construction performs the operat ion 
outside of  the fault plane, while the present  construction 
performs the calculation in the fault plane. Both 
methods yield the same result. Likewise, this problem 
can be solved graphically as suggested by De Paor (1990) 
or numerically as suggested by Ragan (1990). The 
method I have presented,  like that of Means (1989) from 
which it is derived, is simple for students '  use. 

One might legitimately question the need for yet 
another  shear stress construction, especially one which 
bears a strong resemblance to that of  Means (1989) and 
Fry (1992). The present  method,  however,  has several 
teaching applications. First, this method serves as a 
vehicle for teaching the projection of a line or vector 
across a plane. Second, it helps develop facility working 
with lines which project into or out of the lower- 
hemisphere projection. Third, this method reinforces 
the idea that the direction of maximum resolved shear 
stress is controlled by the directions of the resolved 
stress components  across the fault. Fourth,  it has proved 
useful as a bridge between teaching elementary stress 
vector concepts, and the more  sophisticated stress ten- 
sor solution for shear stress presented by Ragan (1990). 

The method initially was developed to aid in instruc- 
tion of the inversion of fault and slickenside data to 
obtain paleostress information. In this case, the initial 
data includes a known displacement direction and sense 
across a fault. Where  some a p r i o r i  estimate of the 
principal stress orientations can be made,  a range of 
stress conditions can be tested using relative stress 
magnitudes. Gephar t  & Forsyth (1984) define a useful 
stress ratio R, where 

R = (0" 2 - -  O'1)/(¢3r 3 - -  O1). 

The value of R has a numerical range of 

0 - R - 1  

(Gephar t  & Forsyth 1984). Changes in the hydrostatic 
component  or proport ional  changes in stress magnitudes 
will not change either the value of R, or the direction of 
maximum resolved shear stress across a fault surface. 
Thus, upon completing the net construction and 
measuring the necessary angles, a range of stress states 
can be tested to predict the orientation and sense of slip 
on a fault surface. This is useful in that it demonstrates  
that both stress orientations and relative magnitudes 
influence the direction of maximum resolved shear 
stress across a fault surface. A BASIC computer  pro- 
gram is available from the author which illustrates this 
calculation. 

This method has proved useful both in teaching ele- 
mentary  graphical techniques and paleostress inversion 
of fault slip data. Given the simplicity of this approach,  
the lack of rotations, and the combination of vector and 
trigonometric operations,  this approach may be useful in 
other applications as well. 
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